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Percolation in a Voronoi Competition-Growth Model
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We study a model in which two entities (e.g., plant species, political ideas,...)
compete for space on a plane, starting from randomly distributed seeds and
growing deterministically at possibly different rates. An entity which forms an
infinite cluster is considered to dominate over the other (which then cannot per-
colate). We analyze the occurrence of such a form of domination in situations
in which one entity starts from a much larger density of seeds than the other
one, but the latter one grows at a much faster rate than the former one. The
model studied here generalizes the problem of Voronoi percolation.
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1. INTRODUCTION

Suppose that initially the seeds of two plant species A and B are randomly
distributed on the plane and that the region occupied by each species starts
to grow radially with constant speed VA and VB for the species A and B,
respectively, starting from their seeds, so that after a relatively short time
interval s, each seed A, or B, will be the center of a ball of radius SVA, or
SVB, respectively. The growth of each species into empty land is normal to
the tangent to the boundary of the occupied region, and we suppose also
that land already occupied by one species cannot be invaded by the other
one. We can think that a species which percolates, i.e., forms an infinite
cluster, dominates the other one (from ref. 1 we know that at most one of
the species can percolate). It is natural to ask whether one of them will
ultimately percolate, and under which conditions.
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Motivated in part by this fairly caricatural biological picture, we will
consider in this note a site percolation problem on a family of random par-
titions of R2. The heuristic definition given above, with some additional
notation, suffices to understand the statement of our result (the proposition
below). The rigorous definition of the model is given in the next section
together with the proof of the result.

Denote by P the set of initial points that we assume chosen according
to a Poisson point process of rate one. Declare each point of type A (resp. B)
with probability a (resp. 1 —a) , independently. Around each seed xe& a
cell starts to grow and compete for space as described above.

This defines a time dependent partition of the plane in three kinds of
regions: type A, type B and empty regions. Let us denote by At the union
of all cells of type A at time t>0 and similarly for Bt . Write also
Et = R2\(At u Bt) for the empty region at time t. Thus the model on which
we discuss percolation questions is a dynamical system { A t , Bt, E t } t > 0

with randomness only present in the initial state given by the positions of
seeds 0*.

In any finite region the growth eventually stops and a final partition
is obtained into type A and B cells. Note that the time to reach this final
partition for a given finite region A c R2 is random (depends on 2P). The
final partition in R2 is the one that agrees in any finite region with the final
partition there.

Let r = VA/VB be the ratio of the two velocities. The occurrence of A or
B percolation in the final random partition depends on the relationship
between the initial densities of the species, a, and their growth rate ratio r.
Without loss of generality we may take VA = 1 and vB = r-1, and to
emphasize the symmetry between A's and B's we will sometimes use the
parameter R = r/( 1 + r) e [0, 1 ].

If VA = VB, the corresponding final partition is known as Poisson
Voronoi Tesselation of the plane(2) which has been studied in many dif-
ferent contexts. It is the only case in which the cells are simple to describe.
The cell corresponding to x e 3P is given by

For this case the percolation problem was posed in refs. 3 and 4. The per-
colation model here is self-dual, in that a square must either be crossed by
a line of A's in the horizontal direction or else by a line of B's in the verti-
cal direction; the two possibilities being equally likely when a. = 1/2. This
leads to the conjecture that B percolates for <x< 1/2, and A percolates for
a> 1/2. (If a proper version of the RSW lemma from discrete percolation
theory (see, e.g., Theorem 9.70 in ref. 5) as well as a version of the
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Menshikov-Aizenman-Barsky result on sharpness of the phase transition
(see, e.g., Chapter 3 in ref. 5) were available here, one would be able to
prove it.) Currently it is only known that for some l / 2 < a c < l , A per-
colates when <x>a c and B percolates when <x< 1 — ac.

(1)

The basic percolation problem in our more general setting involves the
analysis of the "phase diagram" in terms of these two parameters, that is,
characterizing the regions of values of a and R for which one has A per-
colation, B percolation, and the region on which no percolation occurs.
The same kind of heuristics that is used for the usual Voronoi percolation
suggests the conjecture that there is a single critical line in this diagram
separating two regions, one on which A percolates, while on the other B
percolates.

Of course, A percolates if both parameters favor strongly enough this
situation, that is, for a and R both close to 1, and similarly for the B
percolation when a and R are both close to 0.

A more interesting region is where a and R compete with each other:
a near 1 and R small or vice versa. This is the region we analyze here and
obtain bounds for the critical line (or critical region if that is the case).

Heuristically, to decide which species percolates, one can compare the
typical time needed for A's to close the gap between their adjacent nuclei
and for B's to do the same. Such times are of the order of a . - 1 / 2 / ( 2 v A ) and
(1 — a . ) - 1 / 2 / ( 2 v B ) , respectively. Equating these expressions one obtains the
heuristic critical line

Such a naive computation, based on averages, neglects the fluctuations in
the distributions of nuclei and the interference between the growth of the
two species, and can therefore be seen as a sort of "mean field" approxima-
tion. Nevertheless the proposition below shows that there is some truth to
this heuristics when r is close to zero. By switching A's and B's one can find
analogous statements for r very large. Figure 1 shows solid lines corre-
sponding to the rigorous bounds obtained in the proposition and a dashed
line corresponding to the critical line of this "mean field" approximation.

Proposition. There exist positive finite constants c and C, c < C ,
such that for small enough r
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Fig. I. Phase diagram (R, a).

It seems to us that the model discussed here, referred to as Voronoi
Competition-Growth model, is both natural and interesting in itself and
incorporates nicely the balance between growth and competition for space.
Besides the open questions already discussed about the whole phase
diagram of this model in its final state ( t -> oo) one could also ask about
the time dependence of its properties. An interesting open problem is the
analysis of the behavior of the (deterministic) time needed for the
occurrence of percolation.

A related system is defined in ref. 2 in which different growth velocities
are obtained by changing the Euclidean distance ||x-y| in (1) by
||x — y | | / v (x ) , where v(x) is the isotropic growth velocity of the cell around
seed x e &. This leads to a quite different competition-growth system as a
fast-growing seed can dominate new, previously empty, territory by "flying
over" an area already dominated by slow-growing seeds and the resulting
cells can be disconnected. Another system presented in ref. 2 is the Johnson
and Mehl model in which the growth velocities are the same for all seeds
but they start to grow at random times.

We also mention a recent algorithm to obtain Voronoi partitions
using the so called wavefront approach(6) which also adopts a dynamical
point of view. There, a line sweeps across the plane, say with constant
velocity, leaving behind "the best possible approximation" of Voronoi par-
tition knowing the positions of the points already swept.
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2. PROOF OF THE PROPOSITION

We start with the definition of the dynamical system { A t , Bt, E t} t > 0

for each random initial configurations of seeds Sf.
Without loss of generality lets us assume r small, that is

vB = r-1>v1 = 1.
For two points x and y in R2 let l x , y denote a smooth non- self-inter-

secting curve from x to y; each z e l x , y is specified by the length of the
curve from x to z; denote this length by l x , y ( z ) . Write also |lx,y| for the
length of the whole curve.

Define now a B-neighborhood of a curve lx , y:

where ,^(z)(z) denotes the ball of radius p(z) centered in z and

Let ;^, the set of seeds, and its subsets 3?A of type A seeds and
&B = 2P\&A of type B seeds, be given.

For each t > 0, we say that a point y e Bt if and only if there exists a
smooth non-self-intersecting curve l x , y from xe2?B to y with |lx,y|< t/r so
that N B ( l x , y ) n A = 0.

After defining the area dominated by the fast growing seeds, Bt, we
set: ye At if and only if there exists a smooth non-intersecting curve
l x , y<=R2 \B t from xe0>A to y with | l x , y | < t . Of course then Et will be the
complement of At u Bt.

Note that this approach does not work if we wanted to start defining
At and then Bt. Basically the difference is that slow growing seeds can help
each other: a slow growing seed can succeed in invading a certain point of
the plane because other slow growing seeds can block an invasion by a fast
growing one.

We now proceed to the proof of the proposition:
Let us analyze first the case (1). We will need to rescale the space

twice.
First we rescale the space R2 by placing a grid of mesh (1/^/2) K on

it, where K is chosen so that at time zero the probability of having at least
one nucleus in a square (l/v/2) K x (1/^/2) K is greater than pc , 0 , the criti-
cal value of the independent site percolation model. That is, K satisfies
e-(k2/2)< 1-pc,0.

Let us suppose for the moment that <x= 1, so that all nuclei are of
species A. Let the system evolve up to time K. At this time every nucleus
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A would be the center of a ball of radius K. If at time zero a (1A/2) K x
(l/v/2) k square contained a nucleus A, then at time K that square would
be entirely covered by A, even if we disregard invasion by A's from outside
this square. In the rescaled space, that square would be an A square, and
we can think of a (independent) site percolation model on Z2, where each
(1A/2) K x (1/,/2) K square plays the role of a site. The choice of K and
standard facts from percolation theory guarantee that the probability that
a box of size kr-1 X kr-1 has a circuit of A squares which surrounds the
1kr-1 x 1kr-1 box at its center is at least 1 -c1 exp{ — c2r-1}, for some
positive finite constants c, and c2.

To take into account the presence of B's, we rescale the space again.
The blocks in this construction are squares of side-length 3/kr-1 (see Fig. 2).
In this construction, neighboring blocks will intersect each other. Indeed,
we place one such block centered at each point of 1kr-1Z2. We say that
a block in this construction is good in case at time zero it has the following
properties.

(i) It contains enough nuclei A inside the square of side- length kr-1

concentric with it to assure that in the absence of B's, at time K this square
would contain a circuit of A's surrounding the square of side-length 1kt-1

also concentric with it.
(ii) It contains no nucleus B.

Fig. 2. Blocks in the second rescaling procedure.
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Clearly the geometry of the blocks and conditions (i) and (ii) above
were chosen so that the B's cannot prevent the A's from forming the
desired circuit described in (i) at time K. Clearly also percolation of good
blocks in this construction implies percolation of A's at time K.

Our arguments above showed that (i) occurs with arbitrarily large
probability when r is small enough. To also assure a large probability for
(ii) we choose (1 —a) small enough. It is enough to make the choice so that

where pc,6 is the critical value for the 6-dependent site percolation model
(the 6-dependence comes from the intersection between neighboring blocks,
and we are using the l""-norm in describing the range of dependence). This
is equivalent to requiring 1 — <x<cr2, with c = ( 3 k ) - 2 log(1 —1(1 — p C , 6 ) ) - 1 .

We turn now to case (2). Again we will need to rescale the space twice.
Here the proof involves basically two steps. First one verifies that even

if the initial density of A seeds is very large it can not percolate before a
suitable short enough time and that, at this time, the space not occupied
by A forms an infinite cluster. The second step controls how large one has
to take vB so that B can, during that time, grow and dominate enough of
this non-A infinite cluster and percolate.

First we cover R2 with a grid of mesh K, where k is chosen so small
that, at time zero, the probability of having any nucleus in a square 3k x 3k
is smaller than a quantity £ which we will specify later on. That is
1 -exp{ -9k2} <e.

Let us suppose for the momentum that the nuclei of B do not grow,
while those of A grow with their speed VA = 1. In this construction, we will
say that a square K x K which at time K is completely empty of A is a "good
K x K square".

In this situation, the probability that a K x K square is good is bounded
below by 1 — e, and for distinct such squares, these events have a l °° range
of dependence equal to 2 when indexed by the sites in the lattice defined
by the squares. The actual growth of the B's can only hinder that of the
A's, so that we have a useful comparison between the actual model and the
modified one just discussed.

To take into account the presence of the B's, we rescale the space
again. The basic geometric objects in this second rescaling procedure are
rectangles 1kr-1 x 1kr-1. We will say that such a rectangle is good in case
at time zero it has the following two properties.

(I) There are so few A's inside the rectangle and within l"-distance
2K of it that in the modified model in which B's do not grow, at time K at
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least 1/6 of the K x K squares from the first rescaling procedure which lie
inside our rectangle are connected to both smaller sides of the rectangle by
paths of k X k squares completely free of A's (i.e., good squares) and which
also fulfill the following conditions. The K x K squares in the path are sup-
posed to lie entirely inside the rectangle, except possibly for the ones at the
extremes of the path, which may be partially outside it. Moreover the path
is such that inside the union of the K X K squares which belong to it there
is a smooth curve of length at most (3/4) Kr-1 joining the two smaller sides
of the rectangle. We will call these good K X K squares "doubly connected."

(II) There is at least one nucleus B inside one of the K X K doubly
connected squares.

In order to estimate the probability of the event defined in (I) above,
we will use oriented percolation. This is to control not only the existence
of a path of empty space inside some region but also its length and thus
make sure it can be invaded by B in the allotted time with the velocity
given by the proposition.

Consider as sites of a rescaled lattice the K x K squares, and declare a
site to be occupied when it corresponds to a good K X K square. First we
consider oriented percolation in which each site can only be connected to
the site to its right and to the site above it. Call this NE- oriented percola-
tion. Given a site s = (xs, ys) in our rescaled lattice, let ENE be the event
that it belong to an infinite NE-oriented cluster contained in the region
{(x, y ) e Z 2 : y>y s , x s < x < x s + (y — ys)/16}. Consider next oriented per-
colation on the same rescaled system, but with the orientation in both
directions reversed. Call this SW-oriented percolation. Given a site s =
(xs, ys) in our rescaled lattice, let £sw be the event that it belong to an
infinite SW-oriented cluster contained in the region {(x, y) e Z2: y < ys,
xs-(ys-y)/16<x<xs}. Set also ES = ENE r*ESW. Standard Peierls type
estimates (for finite-range-dependent oriented percolation) show that if e is
small enough (which amounts to taking K small enough), then the prob-
ability of Es can be made as close to one as we want. How large we need
it to be will be clarified in the next paragraph.

Consider inside of our 1Kr-1x 1Kr-1 rectangle the concentric rec-
tangle with half the linear dimensions of our rectangle. Note that when r
is small, this smaller rectangle contains more than 1/5 of the K X K squares
which are contained in the larger rectangle. Also, if a K X K square which
lies inside of the smaller rectangle and corresponds to the site s of the res-
caled lattice has the event Es happening, then elementary geometry tells us
that it is a doubly connected K X K square. Since the probability of Es does
not depend on s and the number of K x K squares that may provide this
double connection grows as r decreases we conclude (via a standard use of
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ergodicity) that the probability of the event defined in (I) above converges
to 1 as r -» 0.

Conditioning on the event defined in (I), the event defined in (II) will
have probability bounded below by 1 — exp{ —(1 —a) 1 K 2 r - 2 } , when r is
small. Therefore by making ( 1 — < x ) r - 2 large enough, we can make the
probability that the rectangle is good arbitrarily large for small r.

Note that if a rectangle is good, then, if r is small, at time K the region
occupied by B will contain a curve which joins its smaller sides. (B has time
to make it, and A cannot prevent it.)

There are various ways in which one can use the good rectangles to
set up a rescaling procedure. One possibility is as follows. The blocks that
correspond to the rescaled sites are squares 1kr-1 x 1kr-1. Of relevance are
the four rectangles 1kr-1 x 1kr-1 which are contained in this square and
share a complete side with it. We say that the square is good in case all
these four rectangles are good. A good square 1kr-1 x 1kr-1 will have a
ring of empty K x K squares formed by the paths on the four good rec-
tangles. The rescaled lattice is defined by placing one such square 1kr-1 x
1kr-1 centered at each point of (1kr-1) Z2, When r is small, the distribu-
tion of good 1kr-1 x 1kr-1 squares defines a 2-dependent random field,
since the goodness of a 1kr-1 x 1kr-1 rectangle depends only on the dis-
tribution at time zero of nuclei inside of it or at most at l"-distance 2k
from it. Therefore percolation of good squares is assured when r is small.
The percolation of these intersecting good squares ensures that the rings of
empty paths inside them form an infinite cluster, therefore implying per-
colation of B at time K in our model.
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